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Abstract. Expander graphs in general, and Ramanujan graphs in particular, have been of great
interest in the last four decades with many applications in computer science, combinatorics and
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0. Introduction

Expander graphs are highly connected finite sparse graphs. These graphs play a
fundamental role in computer science and combinatorics (cf. [Lub94,HLW06],
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and the references within) and in recent years even found numerous applica-
tions in pure mathematics ([Lub12]). Among these graphs, Ramanujan graphs
stand out as optimal expanders (at least from the spectral point of view). The
theory of expanders and Ramanujan graphs has led to a very fruitful interaction
between mathematics and computer science (and between mathematicians and
computer scientists). In the early days, deep mathematics (e.g. Kazhdan prop-
erty (T) and the Ramanujan conjecture) has been used to construct expanders
and Ramanujan graphs. But recently, the theory of computer science pays its
debt to mathematics and expanders start to appear more and more also within
pure mathematics.

The fruitfulness of this theory calls for a generalization to high dimensional
theory. Here the theory is much less developed. The goal of these notes is to
describe some of these efforts and to call the attention of the mathematical
and computer science communities to this challenge. We strongly believe that a
beautiful and useful theory is waiting for us to be explored.

Most of the notes will be dedicated to the story of Ramanujan complexes.
These generalizations of Ramanujan graphs, which has been developed in
[CSŻ03,Li04,LSV05a,LSV05b,Sar07] became possible by the significant de-
velopment of the theory of automorphic forms in positive characteristic and
especially the work of L. Lafforgue [Laf02]. In Chap. 1, we will describe the
classical theory of Ramanujan graphs, in a way which will pave the way for a
smooth presentation in Chap. 2, of the much more complicated theory of Ra-
manujan complexes.

The situation with high dimensional expanders is more chaotic. Here it is not
even agreed what should be the “right” definition. Several generalizations of the
concept of expander graph have been suggested, which are not equivalent. It is
not clear at this point which one is more useful. Each has its own charm and part
of the active research on this subject is to understand the relationships between
the various definitions.

We describe these activities briefly in Chap. 3. It can be expected (and, in
fact, I hope!) that these notes will not be up to date by the time they will appear
in press. . . .

1. Ramanujan graphs

In this chapter we will survey Ramanujan graphs, which are optimal expand-
ing graphs from a spectral point of view. The material is quite well known by
now and has been described in various places ([LPS88,Sar90,Lub94,Val97]).
We present it here in a way which will pave the way for the high dimensional
generalization—the Ramanujan complexes—which will come in the next chap-
ter.
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1.1. Eigenvalues and expanders

Let X D .V;E/ be a finite connected k-regular graph, k � 3, with a set V of
n vertices, and adjacency matrix A D AX , i.e., A is an n � n matrix indexed
by the vertices of X and Aij is equal to the number of edges between i and j
(which is either 0 or 1 if X is a simple graph).

Definition 1.1.1. The graph X is called Ramanujan if for every eigenvalue � of
the symmetric matrix A, either � D ˙k (“the trivial eigenvalues”) or j�j �
2
p
k � 1.

Recall that k is always an eigenvalue of A (with the constant vector/function
as an eigenfunction) while �k is an eigenvalue ofA if and only ifX is bi-partite,
i.e., the vertices of X can be divided into two disjoint sets Y and Z and every
edge e in E, has one endpoint in Y and one in Z. In this case, the eigenfunction
is 1 on Y and �1 on Z.

Ramanujan graphs have been defined and constructed in [LPS88] (see also
[Mar88] and see [Sar90,Lub94,Val97] for a more comprehensive treatment).
The importance of the number 2

p
k � 1 comes from the Alon–Boppana Theo-

rem which asserts that for any fixed k, no better bound can be obtained on the
non-trivial eigenvalues of an infinite sequence of finite k-regular graphs.

Theorem 1.1.2 (Alon–Boppana (cf. [LPS88,Nil91])). For a finite connected
k-regular graph X , denote

�1.X/ D maxf� j� an eigenvalue of A and � ¤ kg;
�0.X/ D maxfj�j j� an eigenvalue of A and � ¤ kg;
�.X/ D maxfj�j j� an eigenvalue of A and � ¤ ˙kg:

If fXig1
iD1 is a sequence of such graphs with jXi j ! 1 (where jXi j is the size

of Xi ), then
lim inf
i!1 �.Xi / � 2

p
k � 1:

The hidden reason for the number 2
p
k � 1 is: All the finite connected k-

regular graphs are covered by the k-regular tree, T D Tk . Let AT be the adja-
cency operator of T , i.e., for every function f on the vertices of T and for every
vertex x of it,

AT .f /.x/ D
X
y�x

f .y/

namely, AT sums f over the neighbors of x. Then AT defines a self adjoint
operator L2.T / ! L2.T /.

Proposition 1.1.3 ([Kes59]). The spectrum of AT is Œ�2pk � 1; 2pk � 1�.
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Of course, k is not an eigenvalue of AT as the constant function is not in L2.
It is even not in the spectrum (unless k D 2, in which case Tk is a Cayley graph
of the amenable group Z, but this is a different story). But, k is necessarily
an eigenvalue for all the adjacency operators induced on the finite quotients
�nT , where � is a discrete cocompact subgroup of Aut.T /. Similarly, �k is an
eigenvalue of the finite quotient �nT if it is bi-partite (which happens if � D
�1.�nT / preserves the two-coloring of the vertices of T ). Now, Ramanujan
graphs are the “ideal objects” having their non-trivial spectrum as good as the
“ideal object” T .

There is another way to characterize Ramanujan graphs. These are the graphs
which satisfy the “Riemann hypothesis”, i.e., all the poles of the Ihara zeta func-
tion associated with the graph lie on the line <.s/ D 1

2
. See [Lub94, §4.5] and

especially the works of Ihara [Iha66], Sunada [Sun88] and Hashimoto [Has89].
The work of Ihara showed the close connection between number theoretic

questions and the combinatorics of some associated graphs. While it was Sa-
take [Sat66] who showed how the classical Ramanujan conjecture can be ex-
pressed in a representation theoretic way. These works have paved the way to
the explicit constructions of Ramanujan graphs to be presented in §1.2 and §1.3.

Ramanujan graphs have found numerous applications in combinatorics,
computer science and pure mathematics. We will not describe these but rather
refer the interested readers to the thousands references appearing in google
scholar when one looks for Ramanujan graphs.

We should mention however their main application and original motivation:
expanders.

Definition 1.1.4. For X a k-regular graph on n vertices, denote:

h.X/ D min
0<jAj<jV j

n � jE.A; V nA/j
jAjjV nAj

where E.A;B/ is the set of edges from A to B . We call h.X/ the Cheeger
constant of X .

Remark 1.1.5. In most references, the Cheeger constant is defined as

h.X/ D min
0<jAj� jV j

2

jE.A; V nA/j
jAj :

Clearly h.X/ � h.X/ � 2h.X/. For our later purpose, it will be more conve-
nient to work with h.X/.

Definition 1.1.6. The graph X is called an "-expander (for 0 < " 2 R) if
h.X/ � ".
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Expander graphs are of great importance in computer science. Ramanujan
graphs give outstanding expanders due to the following result:

Theorem 1.1.7 ([Tan84,Dod84,AM85,Alo86]). For X as above,

h2.X/

8k
� k � �1.X/ � h.X/:

In particular, Ramanujan k-regular graphs are "-expanders with " D k �
2
p
k � 1 (or if one prefers the more standard notation h.X/ � k

2
� p

k � 1).

A very useful result in many applications is the following Expander Mixing
Lemma:

Proposition 1.1.8. For X D .V;E/ as above and for every two subsets A and
B of V , ˇ̌̌

E.A;B/ � kjAjjBj
jV j

ˇ̌̌
� �0.X/

p
jAjjBj:

Note that kjAjjBj
jV j is the expected number of edges between A and B if X

would be a “random k-regular graph”. So, if �0.X/ is small, e.g. if X is Ra-
manujan, it mimics various properties of random graphs. This is one of the char-
acteristics which make them so useful.

There is no easy method to construct Ramanujan graphs. Let us better be
more precise here: There are many ways to get, for a fixed k, finitely many
k-regular Ramanujan graphs (see [Lub94, Chapter 8]), but there is essentially
only one known explicit way to get, for a fixed k, infinitely many k-regular
Ramanujan graphs. This will be described in the next section. A recent break-
through [MSS13] showed, in a non-explicit way, that for every k � 3, there are
infinitely many bi-partite k-regular Ramanujan graphs.

In the next subsection we will describe the Bruhat–Tits tree and present the
basic theory that will enable us in the following subsection to get explicit con-
structions of Ramanujan graphs.

1.2. Bruhat–Tits trees and representation theory of PGL2

Let F be a local field (e.g. F D Qp the field of p-adic numbers, or a finite
extension of it, or F D Fq..t// the field of Laurent power series over the finite
field Fq) with ring of integers O (e.g. O D Zp or O D FqŒŒt ��), maximal ideal
m D �O where � is a fixed uniformizer, i.e., an element of O with valuation
�.�/ D 1 (e.g. � D p or � D t , respectively), so k D O=m is a finite field of
order q. Let G D PGL2.F / and K D PGL2.O/, a maximal compact subgroup
of G. The quotient space G=K is a discrete set which can be identified as the
set of vertices of the regular tree of degree q C 1 in the following way:
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Let V D F 2 be the two dimensional vector space over F . An O-submodule
L of V is called an O-lattice if it is finitely generated as an O-module and spans
V over F . Every such L is of the form L D O˛ C Oˇ where f˛; ˇg is some
basis of V over F . The standard lattice is the one with f˛; ˇg D fe1; e2g, where
fe1; e2g is the standard basis of V .

Two O-latticesL1 andL2 are said to be equivalent if there exists 0 ¤ � 2 F
such thatL2 D �L1. The group GL2.F / acts transitively on the set of O-lattices
and its center Z, the group of scalar matrices, preserves the equivalent classes.
Hence G D PGL2.F / acts on these classes, with K D PGL2.O/ fixing the
equivalent class of the standard lattice x0 D ŒL0�, L0 D Oe1 C Oe2. So, G=K
can be identified with the set of equivalent classes of lattices. Two classes ŒL1�

and ŒL2� are said to be adjacent if there exist representatives L0
1 2 ŒL1� and

L0
2 2 ŒL2� such that L0

1 � L0
2 and L

0

2=L
0
1 ' k.D O=m/. This symmetric

relation (since �L0
2 � L0

1 and L0
1=�L

0
2 ' k) defines a structure of a graph.

Theorem 1.2.1 (cf. [Ser80, p. 70]). The above graph is a .q C 1/-regular tree.

The q C 1 neighbors of ŒL0� correspond to the q C 1 subspaces of co-
dimension 1 of the two dimensional space L0=�L0 Š k2. We can therefore
identify them with P1.k/, the projective line over k.

Let us now shift our attention for a moment to the unitary representation
theory of G. Let C D Cc.KnG=K/ denote the set of bi-K-invariant functions
on G with compact support. This is an algebra with respect to convolution:

f1 � f2.x/ D
Z

G

f1.xg/f2.g
�1/ dg:

The algebra C is commutative (see [Lub94, Chapter 5] and the references there-
in). If H is a Hilbert space and � W G ! U.H / a unitary representation of G,
then � induces a representation � of the algebra C by:

�.f / D
Z

G

f .g/�.g/ dg:

Let H K be the space of K-invariant vectors in H . Then �.f /.H K/ � H K

and so .H K ; �/ is a representation of C . A basic claim is that if � is irreducible
and H K ¤ f0g then .H K ; �/ is irreducible. In fact, as C is commutative,
Schur’s Lemma implies that dim H K D 1. So dim H K D 0 or 1, in the
second case we say that � isK-spherical (or unramified or of class one). We will
be interested only in these representations. Such a representation � is uniquely
determined by .H K ; �/. Let us understand now what is the algebra C .

Let ı be the characteristic function of the subset K . � 0
0 1 /K of G. By its

definition ı 2 C . In fact, it turns out that C is generated as an algebra by
ı and hence every K-spherical irreducible subrepresentation .H ; �/ of G is
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determined by the action of ı on the one dimensional space H K , i.e., by the
eigenvalue of this action.

Let us note now that C also acts on L2.G=K/ in the following way: If f1 2
C and f2 2 L2.G=K/ we think of both as functions on G and we can then look
at f2 � f1 2 L2.G=K/ (check!)

Spelling out the meaning of that for f1 D ı, one can see (the reader is
strongly encouraged to work out this exercise!):
Claim 1.2.2. Let f be a function defined on the vertices of the treeG=K and let
ı be the operator ı W L2.G=K/ ! L2.G=K/ defined by ı.f / D f � ı. Then
for every x 2 G=K

ı.f /.x/ D
X
y�x

f .y/:

Namely, ı is nothing more then the adjacency operator (whose name in the
classical literature is Hecke operator).

Let now � be a cocompact discrete subgroup ofG D PGL2.F / (for simplic-
ity assume also that � is torsion free). Then �nG=K is, on one hand a quotient
of the .q C 1/-regular tree and, on the other hand, a quotient of the compact
space �nG. Hence, this is nothing more than a finite .q C 1/-regular graph.
Moreover, the discussion above shows that the spectral decomposition of the
adjacency matrix of this finite graph (and in particular its eigenvalues) is in-
timately connected with the spectral decomposition of L2.G=K/ as a unitary
G-representation. More precisely, in every irreducible K-spherical subrepre-
sentation � of L2.�nG/, there is a K-invariant function f , i.e., a function in
L2.�nG=K/. As explained above, the one dimensional space spanned by f is
a representation space � for C , which means that f is an eigenvector for the
adjacency operator ı of the finite graph �nG=K. Moreover, every eigenvector
f of ı in L2.�nG=K/ is obtained like that (we can look at the G-subspace
spanned by f , thinking of it as a K-invariant function in L2.�nG/.)

The list of K-spherical irreducible unitary representations of PGL2.F / is
well known (see [Lub94, Theorem 5.4.3] and the references therein). There are
representations of two kinds:

(a) The tempered representations—these are theK-spherical irreducible repre-
sentations .H ; �/ with the following property: There exist 0 ¤ u; v 2 H
such that 	 W G ! C defined by 	.g/ D h�.g/u; vi (the coefficient func-
tion of � with respect to u and v) is in L2C".G/ for every " > 0. The K-
spherical representations with this property are also called in this case “the
principal series” and they are characterized by the property that the associ-
ated eigenvalue � of ı (as a generator of C acting on the one dimensional
space H K) satisfies j�j � 2

p
q.

(b) The non-tempered representations—these are the representations for
which the above � satisfies 2

p
q < j�j � q C 1.
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The above description explains why and how the representation of G D
PGL2.F / on L2.�nG/ is crucial for understanding the combinatorics of the
graph �nG=K. In fact we have (see [Lub94, Corollary 5.5.3]):

Theorem 1.2.3. Let � be a cocompact lattice in G D PGL2.F /. Then �nG=K
is a Ramanujan graph if and only if every irreducible K-spherical G-subrepre-
sentation of L2.�nG/ is tempered, with the exception of the trivial representa-
tion (which corresponds to � D q C 1) and the possible exception of the sign
representation (the non-trivial one dimensional representation sg W G ! f˙1g)
which corresponds to � D �.qC1/ and which appears in L2.�nG/ if and only
if �nG=K is bipartite.

Proving that �’s as in the last theorem indeed exist is a highly non-trivial
issue which we discuss in the next section. This will lead to (explicit) construc-
tions of Ramanujan graphs.

Remark 1.2.4. In case � is a non-uniform lattice inG D PGL2.F / (which exists
only if char.F / > 0) one can develop also a theory of Ramanujan diagrams (cf.
[Mor94b]) which is also of interest even for computer science (see [Mor95]).

1.3. Explicit constructions

In this section we will quote the deep results which imply that various graphs are
Ramanujan and then we will show how to use them to get explicit constructions
of such graphs.

Let k be a global field, i.e., k is a finite extension of Q or of Fp.t/. Let
O be the ring of integers of k, S a finite set of valuations of k (containing all
the Archimedean ones if char.k/ D 0) and OS the ring of S-integers (D fx 2
k j �.x/ � 0;8� … Sg). Let Ge be a k-algebraic semisimple group with a fixed
embedding Ge ,! GLm. A general result asserts that

� D Ge.OS / WD Ge.k/ \ GLm.OS /

is a lattice (D discrete subgroup of finite covolume) in
Q

�2S Ge.k�/ where k�

is the completion of k with respect to the valuation �. In some cases (few of
these will be described below) Ge.k�/ is compact for every � 2 S except of one
�0 2 S . In such a case the projection of � to Ge.k�0

/, which is also denoted by
� , is called an arithmetic lattice in Ge.k�0

/. The arithmetic lattice � comes with
a system of congruence subgroups defined for every 0 ¤ I G OS as:

�.I / D � \ ker.GLm.OS / �! GLm.OS=I //:

If Ge.k�0
/ ' PGL2.F / (or more generally PGLd .F /—see Chapter 2) where F

is a local field as in §1.2, we get the arithmetic groups we are interested in. We
can now state:
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Theorem 1.3.1. Let �.I /G� be a congruence subgroup of an arithmetic lattice
� of G D PGL2.F / as above. Then every infinite dimensional K-spherical
irreducible subrepresentation of L2.�.I /nG/ is tempered.

The only possible finite dimensionalK-spherical representations are the triv-
ial one and the sg representation. From Theorem 1.2.3 we can now deduce:

Corollary 1.3.2. The graph �.I /nG=K is Ramanujan.

Theorem 1.3.1 is a very deep result whose proof is a corollary of various
works by some of the greatest mathematicians of the 20th century. It is based in
particular on the solution of the so called “Peterson–Ramanujan conjecture”. (In
characteristic 0, in two steps: by Eichler for weight two modular forms which
is the relevant case for us, and by Deligne in general. In positive characteristic
by Drinfel’d.) Then one needs to combine it with the Jacquet–Langlands corre-
spondence. The reader is referred to [Lub94] for more and in particular to the
Appendix there by J. Rogawski which gives the general picture.

The last result gives explicit graphs in the mathematical sense of explicit, but
it also paves the way for an explicit construction, in the computer science sense,
of Ramanujan graphs. We will present the ones constructed in [LPS88].

WhenG D PGL2.F /, all the arithmetic lattices inG are obtained via quater-
nion algebras. Namely, let D be a quaternion algebra defined over k and Ge D
D�=Z, i.e., the invertible quaternions modulo the central ones. If D splits over
�0 2 S (i.e.,D˝k�0

' M2.k�0
/) while it is ramified over all � 2 Snf�0g (i.e.,

D˝k� is a division algebra in which case .D ˝ k�/
�=Z.D ˝ k�/ is a compact

group) then Ge.OS / gives rise to an arithmetic lattice in Ge.k�0
/ D PGL2.k�0

/.
Such lattices (and their congruence subgroups) can be used for the construction
of Ramanujan graphs.

Let us take a very concrete example: LetD be the classical Hamilton quater-
nion algebra; soD is spanned over Q by 1; i; j and k with i2 D j 2 D k2 D �1
and ij D �j i D k. It is well known that it is ramified over R and over Q2 while
splits over Qp for every odd prime p, and that Ge.R/ D H�=R� ' SO.3/
while Ge.Qp/ D M2.Qp/

�=Q�
p ' PGL2.Qp/. Fix such a prime p and set

S D f�p; �1g. Then OS D ZŒ 1
p
� D f a

pn j a 2 Z; n 2 Ng, and as explained
above, D.ZŒ 1

p
�/ is a discrete subring of D.R/ �D.Qp/, while

� D D
�
Z

h 1
p

i��
=Z ,�! SO.3/ � PGL2.Qp/

is a cocompact lattice.
Moreover, Jacobi’s classical theorem tells us that there are 8.pC1/ solutions

to the equation: x2
0 C x2

1 C x2
2 C x2

3 D p with .x0; x1; x2; x3/ 2 Z4. Assume
now p 	 1.mod 4/. In this case three of the xi are even and one is odd. If we
agree to take those with x0 odd and positive, we have a set† of pC 1 solutions
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which come in pairs ˛1; ˛1; : : : ; ˛s; ˛s where s D pC1
2

and where we consider
˛ as an integral quaternion ˛ D x0Cx1iCx2jCx3k, ˛ D x0�x1i�x2j�x3k

and so k˛ik D k˛ik D p. These pC1 elements give pC1 elements inGe.Qp/.
Moreover, each ˛i (and ˛i ) when considered as an element of PGL2.Qp/ takes
the standard Zp-lattice in Qp � Qp (see §1.2) to an immediate neighbor in the
tree and ˛i D ˛�1

i . One can deduce (see [Lub94, Corollary 2.1.11]) that the
group ƒ D h˛1; ˛1; : : : ; ˛s; ˛si is a free group on s D pC1

2
generators acting

simply transitive on the Bruhat–Tits .p C 1/-regular tree T . One can therefore
identify this tree with the Cayley graph of ƒ with respect to † D f˛i j i D
1; : : : ; sg. As ƒ is also a lattice in PGL2.Qp/, it is of finite index in � . One can
check (using “strong approximation” or directly) that if q is another prime with
q 	 1.mod 4/ then �.2q/nT D Cay.ƒ=.ƒ \ �.2q//I†/.

Spelling out the meaning of this, one gets the following explicit construction
of Ramanujan graphs, which are usually referred to as the LPS-graphs.

Theorem 1.3.3 ([LPS88], see [Lub94, Theorem 7.4.3]). Let p and q be differ-
ent prime numbers with p 	 q 	 1.mod 4/. Fix " 2 Fq satisfying "2 D �1.
For each ˛i D .x0; x1; x2; x3/, i D 1; : : : ; s in the set † above, take the matrix

ęi D
�
x0 C "x1 x2 C "x3

�x2 C "x3 x0 � "x1

�
2 PGL2.Fq/

and e† D fęi j i D 1; : : : ; sg. Let H be the subgroup of PGL2.Fq/ generated bye† and Xp;q D Cay.H I e†/, the Cayley graph of H with respect to e†. Then:

(a) Xp;q is a .p C 1/-regular Ramanujan graph.
(b) If .p

q
/ D �1, i.e., p is not a quadratic residue modulo q, then H D

PGL2.Fq/ andXp;q is a bi-partite graph, while if .p
q
/ D 1,H D PSL2.Fq/

and Xp;q is not bi-partite.

The main motivation for the construction of Ramanujan graphs has been ex-
panders, but the LPS graphs turned out to have various other remarkable proper-
ties like high girth and high chromatic numbers (simultaneously!). See [LPS88,
Lub94,Sar90,Val97] for more.

In [Mor94a], Morgenstern constructed, for every prime power q, infinitely
many .q C 1/-regular Ramanujan graphs. This time by finding an arithmetic
lattice in PGL2.Fq..t/// acting simply transitive on the Bruhat–Tits tree. An-
other such a construction is given (somewhat hidden) in [LSV05a] as a special
case of Ramanujan complexes (to be discussed in the next chapter). These last
mentioned Ramanujan graphs are also edge transitive and not merely vertex
transitive (see [KL12]).
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2. Ramanujan complexes

This chapter is devoted to the high-dimensional version of Ramanujan graphs,
the so called Ramanujan complexes. These are .d � 1/-dimensional simplicial
complexes which are obtained as quotients of the Bruhat–Tits building Bd as-
sociated with PGLd .F /, F a local field, just like the Ramanujan graphs were
obtained as quotients of the Bruhat–Tits tree of PGL2.F /. What enables this,
is the work of Lafforgue [Laf02] which extended to general d , the “Ramanujan
conjecture” for GLd in positive characteristic, proved first by Drinfel’d [Dri88]
for d D 2 (the work of Drinfel’d was the basis for the Ramanujan graphs con-
structed by Morgenstern [Mor94a]). We will start in §2.1 with the basic defini-
tions and results about buildings and will present the associated Hecke opera-
tors, generalizing the Hecke operator (Dadjacency matrix) which appeared in
Chap. 1. We will present the analogue of Alon–Boppana Theorem and define
Ramanujan complexes. In §2.2 we will survey shortly the representation theory
of PGLd .F / and just as in Theorem 1.2.3, we will show that representation the-
ory is relevant for the combinatorics of �nBd . Then in §2.3, we will present
explicit constructions of Ramanujan complexes.

We will follow mainly [LSV05a] and [LSV05b], where the reader can find
precise references for the results mentioned here. The reader is also referred to
[Bal00,CSŻ03,Li04,Sar07] for related material.

2.1. Bruhat–Tits buildings and Hecke operators

Let K be any field. The spherical complex P d�1.K/ associated with Kd is the
simplicial complex whose vertices are all the non-trivial (i.e., not f0g and not
Kd ) subspaces of Kd . Two subspaces W1 and W2 are on the same 1-edge if
either W1 � W2 or W2 � W1, and fW0; : : : ; Wrg is an r-cell if every pair
Wi ;Wj forms an edge (i.e., Pd�1.K/ is a “clique complex”). It can be shown
that this happens if and only if after some reordering W0 � W1 � � � � � Wr .
When K D Fq , a finite field of order q, P1.Fq/ is just a set of q C 1 points
(which can be identified with the projective line over Fq). For d D 3, P2.K/ is
the .qC 1/-regular graph with 2.q2 C qC 1/ vertices of “points” versus “lines”
of the projective plane. In general P d�1.K/ is a .d � 2/-dimensional simplicial
complex.

We now describe B D Bd .F /, the affine Bruhat–Tits building of type eAd�1

associated with F . Here F is a local field with O , � and m as in §1.2 and
O=m D Fq . An O-lattice in V D F d is a finitely generated O-submodule L of
V such thatL contains an F -basis of V . Two latticesL1 andL2 are equivalent if
L1 D �L2 for some 0 ¤ � 2 F . The vertices of B are the equivalence classes
of O-lattices in V , and two distinct equivalent classes ŒL1� and ŒL2� are adjacent
in B if there exist representatives L0

1 2 ŒL1� and L0
2 2 ŒL2� s.t. �L0

1 � L0
2 �
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L0
1. The r-simplices of B (r � 2) are the subsets fŒL0�; : : : ; ŒLr �g such that

all pairs ŒLi � and ŒLj � are adjacent. It can be shown that fŒL0�; : : : ; ŒLr �g forms
a simplex if and only if there exist representatives L0

i 2 ŒLi � such that after
reordering the indices, �L0

r � L0
0 � � � � � L0

r . The complex B is therefore of
dimension d � 1 D rankF .PGLd .F //. This is a special case of the Bruhat–Tits
building associated with a reductive group over F . The next theorem is also a
special case which generalizes Theorem 1.2.1:

Theorem 2.1.1. The complex Bd .F / is contractible. The link of each vertex is
isomorphic to Pd�1.Fq/.

The vertices of B come with a natural coloring (“type”). Let 
 W B0 !
Z=dZ be defined as follows: Let Od � V be the standard lattice in V . For any
lattice L, there exists g 2 GL.V / D GLd .F / such that L D g.Od /. Define

.ŒL�/ D �.det.g//.modd/where � is the valuation of F , e.g. for F D Fq..t//,
�.

P1
iDm ai t

i / D m whenm 2 Z and am ¤ 0. Any two vertices in any simplex
of B have different colors.

The group G D GLd .F / acts transitively on the O-lattices in V and its cen-
ter preserves the equivalence classes. As the action preserves inclusions, G D
PGLd .F / acts on the building B. It acts transitively on B0—the vertices—
without preserving their colors, but PSLd .F / does preserves them. The stabi-
lizer of the (equivalence class of the) standard lattice is K D PGLd .O/. Hence
B0 can be identified with G=K. To every directed edge .x; y/ 2 B1 one can
associate the color 
.y/ � 
.x/ 2 Z=dZ. The color of edges is preserved by
PGLd .F /.

Let us now define d � 1 operators—the Hecke operators—as follows: For
1 � k � d � 1, f 2 L2.B0/ and x 2 B0,

.Akf /.x/ D
X

f .y/; (2.1)

where the summation is over the neighbors y of x such that 
.y/� 
.x/ D k 2
Z=dZ. If x D ŒL�; L a lattice, then this amounts to a sum over the sublattices
of L containing �L, whose projection in L=�L are of codimension k there.
Note that Ak commutes with the action of PGLd .F /. One can show that these
operators are bounded, normal and commute with each other. But in general
they are not self-adjoint. In fact, A�

k
D Ad�k so Ak C Ad�k is self-adjoint.

Moreover � D Pd�1
kD1Ak is the adjacency operator of the 1-skeleton of B. For

d D 2, we only have A1 D A�
1 which is indeed the adjacency operator of the

tree. As the operators Ak commute with each other they can be diagonalized
simultaneously. Their common spectrum is therefore a subset †d of Cd�1.

Theorem 2.1.2. Let S D f.z1; : : : ; zd / 2 Cd j jzi j D 1and
Qd

iD1 zi D 1g and

� W .z1; : : : ; zd / 7! .�1; : : : ; �d�1/ where �k D q
k.d�k/

2 �k.z1; : : : ; zd /. Here
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�k is the k-th elementary symmetric function, i.e., �k.z1; : : : ; zd / DP
ii <���<ik

zi1
� � � � � zik

. Then �.S/ is equal to †d , the simultaneous spectrum
of A1; : : : ; Ad�1 acting on L2.B0/.

Note that indeed �k D �d�k as had to be expected, since Ak D A�
d�k

. Also
for d D 2,

†2 D �.S/ D
n
q

1
2

�
z C 1

z

� ˇ̌̌
z 2 C; jzj D 1

o
D Œ�2pq; 2pq�

which shows that Theorem 2.1.2 is a generalization of Proposition 1.1.3.
Ramanujan .q C 1/-regular graphs were defined as the finite quotients of

B2 D TqC1 whose “non-trivial” eigenvalues are all in †2. Similarly we will
define Ramanujan complexes as quotients of Bd whose “non-trivial” eigenval-
ues are in †d . Let us describe first the trivial eigenvalues: Recall that for d D 2

we have two such: .qC 1/ and �.qC 1/. They appear in all the finite quotients
�nB2 when � preserves the colors of the vertices (and only q C 1 appears in
all the finite quotients).

So, assume � � PGLd .F / is a cocompact lattice preserving the colors of the
vertices of B0. So, 
 is well defined on X D �nB0. For a d -th root of unity 
 ,
define f� W X ! C by f�.x/ D 
�.x/. Now, Akf�.x/ sums over the neighbors
of x of color 
.x/Ck.modd/ and there are

�
d
k

�
q

vertices like that (where
�

d
k

�
q

denotes the number of subspaces of codimension k in Fd
q ). Hence Akf�.x/ D�

d
k

�
q

�.x/Ck D �

d
k

�
q

kf�.x/. Thus, for every 
 2 C with 
d D 1, we get

a simultaneous “trivial” eigenvalue .
�

d
1

�
q

1; : : : ;

�
d
k

�
q

k; : : : ;

�
d

d�1

�
q

d�1/.

These are the d trivial eigenvalues. Again, for d D 2, we get Œ 2
1 �q � 1 D q C 1

and Œ 2
1 �q .�1/ D �.q C 1/. We can now define:

Definition 2.1.3. A Ramanujan complex (of type eAd�1) is a finite quotient X D
�nBd satisfying: every simultaneous eigenvalue .�1; : : : ; �k; : : : ; �d�1/ of
.A1; : : : ; Ak; : : : ; Ad�1/ satisfies: either .�1; : : : ; �d�1/ is one of the d triv-
ial eigenvalues (i.e., .�1; : : : ; �d�1/ D .

�
d
1

�
q

1; : : : ;

�
d

d�1

�
q

d�1/ for some

d -th root of unity 
) or .�1; : : : ; �d�1/ 2 †d , described in Theorem 2.1.2.

In the case of d D 2, we saw the Alon–Boppana Theorem (Theorem 1.1.2)
which shows that the Ramanujan bounds are the strongest one can hope from an
infinite family of .q C 1/-regular graphs (for a fixed q). The following theorem
is a strong high dimensional version.

Theorem 2.1.4 ([Li04, Theorem 4.3]). Let Xi be a family of finite quotients
of Bd with unbounded injective radius (recall that the injective radius of a
quotient � W B ! �nB is the maximal r such that � is an isomorphism when
restricted to any ball of radius r in B). Then [specXi

.A1; : : : ; Ad�1/ 
 †d .
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Note that specXi
.A1; : : : ; Ad�1/ is a finite set for every i . So the best bounds

we can hope for Xi ’s, as a family, is to be Ramanujan. The reader is referred
to [Fi14] for a very general “Alon–Boppana theorem”. This work also gives a
meaning to “Ramanujan at level i” for every 0 � i < d � 1, while we consider
here only level 0.

Let us end this section with the following remark:

Remark 2.1.5. The trivial eigenvalues of .A1; : : : ; Ad�1/ are .�1; : : : ; �d�1/ D
.
�

d
1

�
q

1; : : : ;

�
d

d�1

�
q

d�1/. So for Ak , j�kj D �

d
k

�
q

� qk.d�k/ while the
Ramanujan bound gives:

j�kj � q
k.d�k/

2 j�k.z1; : : : ; zk/j �
�
d

k

�
q

k.d�k/
2

so for d fixed and q large, the Ramanujan bound is approximately the square
root of the trivial eigenvalue.

In §1.1 we mentioned that Ramanujan graphs can be characterized by the
fact that their zeta functions satisfy the Riemann hypothesis. Recently there have
been some efforts to associate zeta functions to higher dimensional complexes
with the hope to give a similar characterization for Ramanujan complexes of
dimension 2. See [DH06,Sto06,KLW10,DK14,KL14]. It will be nice if this
theory could be extended also to higher dimensions.

2.2. Representation theory of PGLd

In this section we will describe some basic results from the representation theory
of PGLd .F /, F a local field. For a more comprehensive survey see [Car79]. We
will give only those results which are needed for our combinatorial application.
The goal is to get a high dimensional generalization of Theorem 1.2.3, i.e., a
representation theoretic formulation of Ramanujan complexes.

Let G D PGLd .F / and K D PGLd .O/, O the ring of integers of F .
An irreducible unitary representation .H ; �/ of G is called K-spherical if the
space of K-fixed points H K is non-zero. In this case dim H K D 1. Let
C D Cc.KnG=K/ be the algebra of compactly supported bi-K-invariant func-
tions from G to C, with multiplication defined by convolution

f1 � f2.x/ D
Z

G

f1.xg/f2.g
�1/ dg:

The algebra C is called the Hecke algebra of G. Let e�k D diag.�; �; : : : ; �;
1; 1; : : : ; 1/ 2 GLd .F / with det.e�k/ D �d�k , where � is the uniformizer of
F . Denote by �k the image of e�k in PGLd .F / and let Ak be the character-
istic function of K�kK. Clearly fAkgd�1

kD1
� C (note �0 D �d D Id ). Less
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trivial is the fact that C is commutative and is freely generated as a commuta-
tive algebra by A1; : : : ; Ad�1 (cf. [Mac79, Chap. V ]). Every irreducible unitary
representation .H ; �/ of G gives rise to a representation of C on H K and
when H K ¤ f0g, this last representation is in fact given by a homomorphism
w W C ! C, f � v0 D w.f /v0 for f 2 C . The representation � is uniquely
determined by w (cf. [LSV05a, Prop. 2.2] ) and w is determined by the .d � 1/-
tuple .w.A1/; : : : ; w.Ad�1// 2 Cd�1.

Let us put this in a somewhat more known formulation: a more common
parametrization of the irreducible spherical representations of GLd .F / (and
hence also of PGLd .F /) is by their Satake parametrization .z1; : : : ; zd / 2
.C�/d=Sym.d/. This parametrization is related but not the same as the one we
discuss here. Let us just mention here that

(a) A representation of GLd .F / with Satake parameters .z1; : : : ; zk/ factors
through PGLd .F / if and only if

Qd
iD1 zi D 1.

(b) If .H ; �/ is an irreducible spherical representation of PGLd .F / with Sa-
take parameters .z1; : : : ; zd / then w.Ak/ in the notation above is given by
w.Ak/ D q

k.d�k/
2 �k.z1; : : : ; zd / where �k is the k-th elementary symmet-

ric function on d variables, �k.z1; : : : ; zd / D P
ii <���<ik

zi1
� � � � � zik

.
(c) An irreducible representation .H ; �/ is called tempered, if there exists

0 ¤ v; u 2 H such that the coefficient function  .g/ D h�.g/v; ui is
in L2C".G/ for every " > 0. These are exactly the representations which
are weakly contained (in the sense of the Fell topology) in the representa-
tion of G on L2.G/. If such a representation is also K-spherical then it is
weakly contained in the representation of G on L2.G=K/ D L2.B0/. In
terms of Satake parameters, � is tempered if and only if jzi j D 1 for all i .

The reader is referred to more information in [LSV05a] and for the general
theory in [Car79]. At this point, especially in light of (b) and (c) the reader
may start to guess the connection to Ramanujan complexes. Let us spell it out
explicitly.

LetL0 D Oe1C� � �COed be the standard O-lattice in V D F d and ŒL0� its
equivalence class, which corresponds toK under the identificationG=K D B0.
Let �k be the set of neighbors of color k of ŒL0�. Then ��1

k
K 2 G=K D B0

is one of these neighbors and K (as a subgroup of G) acts transitively on �k

so that K��1
k
K D [yK where the union is over all yK 2 �k . Multiplying

from the left by an arbitrary g 2 G, we see that the neighbors of the vertex
gK forming an edge of color k with it, are exactly fgyKgyK2�k

. It follows that
the operator Ak defined in (2.1) in §2.1, can be expressed as follows: Identify-
ing L2.B0/ D L2.G=K/ with the right K-invariant functions in L2.G/, and
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assuming that K has Haar measure one, for f 2 L2.B0/, and gK 2 B0

.Akf /.gK/ D
X

yK2�k

f .gyK/ D
X

yK2�k

Z
yK

f .gz/ dz

D
Z

K��1
k

K

f .gz/ dz D
Z

G

f .gz/1K�kK.z
�1/ dz D .f � Ak/.gK/;

(2.2)

where Ak at the right hand side of equation (2.2) is the characteristic function of
K�kK, as defined in this section. No confusion should occur here as Eq. (2.2)
shows that the Hecke operators of §2.1 and the Hecke operators of §2.2 are
essentially the same thing! When C D Cc.KnG=K/ acts on L2.G=K/, Ak

acts as the adjacency operators summing over all the neighbors with edges of
color k.

We can now use this to deduce the main goal of this subsection (see
[LSV05a, Prop. 1.5]).

Proposition 2.2.1. Let � be a cocompact lattice of PGLd .F /. Then �nB is a
Ramanujan complex if and only if every irreducible spherical infinite dimen-
sional G-subrepresentation of L2.�nPGLd .F // is tempered.

Sketch of proof. Assume every irreducible spherical infinite dimensional subrep-
resentation of H D L2.�nPGLd .F // is tempered. As � is cocompact, H is a
direct sum of irreducible representations. Let f 2 L2.�nG=K/ be a non-trivial
simultaneous eigenfunction of the Hecke operators Ak with Akf D �kf . As
PSLd .F / has no non-trivial finite dimensional representations, every finite di-
mensional representation of PGLd .F / factors through PGLd .F /=PSLd .F / '
F �=.F �/d . Since F � ' Z � O�, we have F �=O�.F �/d ' Z=dZ and since
f is fixed by K, if f lies in a finite dimensional G-subspace, it correspond to
one of the d trivial eigenvalue. If f spans an infinite dimensionalG-space, then
it is tempered, its Satake parameters .z1; : : : ; zd / satisfy

Q
zi D 1 and jzi j D 1.

The corresponding eigenvalues ofAk are, as explained in point (b) above, in†d

as defined in §2.1.
In the other direction: If H1 is an irreducible spherical infinite dimensional

subrepresentation of L2.�nG/, then its unique (up to scalar) K-fixed vector f
is a simultaneous eigenvector of all the Ak’s where Akf D �kf . By assump-
tion .�1; : : : ; �d�1/ 2 †d , from which we deduce that the Satake parameters
zi all satisfy jzi j D 1 and the representation is tempered. �

So, once again, as we saw for Ramanujan graphs, the problem of construct-
ing Ramanujan complexes moves from combinatorics to representation theory.
In the next subsection, we will describe how deep results in the area of automor-
phic forms lead to such combinatorial constructions.
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Remark 2.2.2. In analogy to the Ramanujan diagrams built out of non-uniform
lattices in PGL2.Fq..t///—see Remark 1.2.4—one can build also non-uniform
Ramanujan complexes (see [Sa09]).

2.3. Explicit construction of Ramanujan complexes

We will start with a general result which gives a lot of Ramanujan complexes.
We then continue to present a very explicit construction.

Let us first recall some notations and add a few more: Let k be a global field
of characteristic p > 0 and D a division algebra of degree d over k. Denote
by Ge the k-algebraic group D�=k�, and fix an embedding of Ge into GLn for
some n. Let T be the finite set of valuations of k for which D does not split.
We assume that for every � 2 T , D� D D ˝k k� is a division algebra. Let �0

be a valuation of k which is not in T and F D k�0
, so that Ge.F / ' PGLd .F /,

and denote S D T [ f�0g. For OS D fx 2 k j �.x/ � 0 8� … Sg the ring of
S-integers in k, Ge.OS / WD Ge.k/ \ GLn.OS / embeds diagonally as a discrete
subgroup of

Q
�2S Ge.k�/. Projecting this subgroup into Ge.k�0

/ D Ge.F / '
PGLd .F / gives an embedding of Ge.OS / as a discrete subgroup in PGLd .F /,
which we denote by � . In fact, by a general result on arithmetic subgroups, �
is a cocompact lattice in PGLd .F /. Thus if B D Bd .F / is the Bruhat–Tits
building associated with PGLd .F /, then �nB is a finite complex. The same
is true when we mod B by any finite index subgroup of � . In particular, if
0 ¤ I G OS is an ideal, then the congruence subgroup �.I / WD ker.Ge.OS / !
Ge.OS=I // is of finite index in � and �.I /nB is a finite simplicial complex
covered by B.

Theorem 2.3.1. For � and I as above, �.I /nB is a Ramanujan complex.

A word of warning: if d is not a prime then there are ideals in O�0
D fx 2

k j �.x/ � 0 8� ¤ �0g (so they may disappear in OS !) which give non-
Ramanujan complexes. We refer to [LSV05a] for this delicate point as well as
for a proof of Theorem 2.3.1. We will not try to explain the proof, but rather give
few hints about it. The Theorem is proved there by going from local to global.
By Proposition 2.2.1 above, �.I /nB is Ramanujan if and only if every infinite
dimensional irreducible spherical subrepresentation �0 of L2.�.I /nPGLd .F //

is tempered. One shows that such �0 is a local factor at �0 of an automorphic
adelic subrepresentation �0 of L2.Ge.k/nGe.A// where A is the ring of adeles
of k. By using the Jacquet–Langlands correspondence, one can replace �0 by a
suitable subrepresentation � of L2.PGLd .k/nPGLd .A//. Then one appeals to
the work of Lafforgue [Laf02] (for which he got the Fields medal!) which is an
extension to general d of the “Ramanujan conjecture” proved by Drinfel’d for
d D 2. This last result says that for various adelic automorphic representations,
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the local factors are tempered. This can be applied to � to deduce that our �0 is
tempered and hence �.I /nB is Ramanujan.

The description of the complexes we gave is pretty abstract but it can be
made very explicit in some cases. To this end we will make use (following
[LSV05b]) of a remarkable arithmetic lattice � constructed by Cartwright and
Steger [CS98]. This lattice has the following amazing property: It acts simply
transitively on the vertices of the building Bd . Such lattices are rare; for ex-
ample in characteristic zero such lattices exist only for finitely many d ’s (see
[MSG12])). Let us describe its (somewhat technical) construction:

We start with the global field k D Fq.y/, whose valuations are �g for ev-
ery irreducible monic polynomial g in FqŒy�, and the minus degree valuation
� 1

y
.f =g/ D degg � degf . Let Fqd be the field extension of Fq of degree

d and 	 a generator of the Galois group Gal.Fqd =Fq/ ' Z=dZ. Fix a basis

0; : : : ; 
d�1 of Fqd over Fq with 
i D 	i .
0/. LetD be the k-algebra with ba-
sis f
izj gd�1

i;j D0 and relations z
i D 	.
i /z and zd D 1Cy. ThenD is a division
algebra which ramifies at T D f�1Cy ; � 1

y
g and splits at all other completions of

k (see [LSV05b, Prop. 3.1]). That is,D�1Cy
D D˝kk�1Cy

D D˝kFq..1Cy//
and D� 1

y

D D ˝k Fq..
1
y
// are division algebras, while D� ' Md .k�/ for

� … T . In particular, Ge.k�/ ' PGLd .k�/ for � … T , where we recall that Gedenotes the k-algebraic group D�=k�.
For �0 we take the valuation �y , which is given explicitly by �y.amy

m C
� � � C any

n/ D m (am ¤ 0, m � n). The completion of k at �0 is F D k�y
D

Fq..y//, the field of Laurent polynomials over Fq . The ring of integer of F is
O D FqŒŒy��, and we recall that B0

d
' PGLd .F /=PGLd .O/.

We now have S D f�1Cy ; � 1
y
; �yg, and the ring of S-integers in k is OS D

FqŒ
1

1Cy
; y; 1

y
�. As explained above, embeddingGe.k/ in some GLn.k/ gives rise

to � D Ge.OS / D Ge.k/ \ GLn.OS /, which embeds as a cocompact arithmetic
lattice in Ge.F / ' PGLd .F /.

Until now we have followed the general construction described in the begin-
ning of this section. In what follows we describe the Cartwright–Steger group,
a subgroup of � which acts simply transitively on B0

d
.

The definition of � D Ge.OS / involves a choice of an embedding of Ge.k/in GLn.k/. It turns out that this embedding can be chosen so that � is simply
D.OS /

�=O�
S , where D.OS / stands for the OS -algebra having the OS -basis

f
izj gd�1
i;j D0, and again the relations z
i D 	.
i /z and zd D 1 C y (see

[LSV05b, Prop. 3.3]). Note that as zd D 1 C y and 1 C y is invertible in
OS , z is invertible in D.OS /. Let b D 1 � z�1 2 D.OS /, and note that b
is also invertible, since it divides 1 � z�d D y

1Cy
and y 2 O�

S . Also note
that Fqd is a subring of D.OS / spanned by the 
i ’s. For every u 2 F�

qd de-
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note bu D ubu�1 2 D.OS /
�. The element bu depends only on the coset of u

in F�
qd =F

�
q , since Fq � Z.D.OS //. Denoting by bu the image of bu in � D

D.OS /
�=O�

S , this gives us a set of qd �1
q�1

elements †1 D fbu ju 2 F�
qd =F

�
q g in

� . Let ƒ D h†1i. This is the promised Cartwright–Steger group.

Theorem 2.3.2 ([CS98], cf. [LSV05b, Prop. 4.8]). The group ƒ acts simply
transitively on the vertices of Bd .F /.

The set†1 D fbu ju 2 F�
qd =F

�
q g takes the “initial vertex” x0 of the building

(i.e., the equivalence class of the standard lattice) to the set of its neighbors x
with 
.x/ D 1 (i.e., the neighboring vertices of color 1, for which the connecting
edge also has color 1). These correspond to the codimension one subspaces of
Fd

q and indeed there are qd �1
q�1

such (on which the finite group F�
qd =F

�
q acts

transitively!) Now, for i D 2; : : : ; d � 1, let †i D f� 2 ƒ j 
..x0; �x0// D ig,
i.e., the subset of ƒ of those elements which takes x0 to a neighbor of color
i . As ƒ acts simply transitively, j†i j D �

d
i

�
q

where
�

d
i

�
q

is the number of

subspaces of Fd
q of codimension i . Let† D [d�1

iD1†i . One can deduce now that
the 1-skeleton of Bd can be identified with Cay.ƒI†/.

Now for every 0 ¤ I G OS , we can define ƒ.I/ as ƒ.I/ D ker.ƒ !
Ge.OS=I //. This defines a complex ƒ.I/nBd which by Theorem 2.3.1 is a
Ramanujan complex.

Observe now that the building B is a clique complex, namely, a set of i C 1

vertices forms a simplex if and only if every two vertices in it form a 1-edge.
(In particular, the full structure of the complex is determined by the 1-skeleton.)
The same is true for the quotientsƒ.I/nBd (at least for large enough quotients,
since the map Bd ! ƒ.I/nBd is a local isomorphism, moreover the injective
radius of ƒ.I/nBd grows logarithmically with respect to its size). So, these
complexes are the Cayley complexes of the group ƒ=ƒ.I / with respect to the
set of generators † (or more precisely, its image in ƒ=ƒ.I /). Recall that a
Cayley complex of a group H with respect to a symmetric set of generators †
is the simplicial complex for which a subset � of H is a simplex if and only
if a�1b 2 † for every a; b 2 �. This is the clique complex determined by the
Cayley graph Cay.H I†/.

To make all this explicit also in the computer science sense, one needs to
identify the quotientsƒ=ƒ.I /. This is carried out using the Strong Approxima-
tion Theorem. When I is a prime ideal of OS , we get that OS=I is a finite field
of order qe for some e. The group ƒ=ƒ.I / is then a subgroup of PGLd .Fqe /

containing PSLd .Fqe /. Various choices of ideals I can be made to make sure
that any of the subgroups H between PSLd .Fqe / and PGLd .Fqe / can occur.
Note that the quotient PGLd .Fqe /=PSLd .Fqe / is a cyclic group of order divid-
ing d . The resulting graphs are therefore t-partite for some t j d , just as in
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case d D 2 where we have had bi-partite and non-bipartite. We skip the tech-
nical details and give only a corollary (see Theorem 1.1 and Algorithm 9.2 in
[LSV05b]).

Theorem 2.3.3. Let q be a given prime power, d � 2 and e � 1. Assume
qe � 4d2. Every subgroup H , with PSLd .Fqe / � H � PGLd .Fqe /, has
an (explicit) set † of

�
d
1

�
q

C � � � C �
d

d�1

�
q

generators, such that the Cayley
complex of H with respect to † is a Ramanujan complex covered by Bd .F /

when F D Fq..y//.

We mention in passing that the construction in this subsection is of interest
even for d D 2 (in spite of the fact that we have already seen other construc-
tions of Ramanujan graphs in the previous chapter) since for d D 2, F�

q2=F
�
q

acts transitively on all the q C 1 neighbors of the standard lattice. From this
one can deduce that the resulting Ramanujan graphs are edge transitive and not
merely vertex transitive (as it is always the case for Cayley graphs). This extra
symmetry plays a crucial role in an application to the theory of error correcting
codes (see [KL12]).

We hope that the higher Ramanujan complexes will also bear some fruits
in combinatorics like their one dimensional counterparts. For first steps in this
direction see [LM07,EGL14,FGLC12]. For example in [LM07] and [EGL14] it
is shown that they enjoy similar extremal properties as Ramanujan graphs: high
girth and chromatic numbers (when these notions get the right interpretations
for high dimensional complexes).

3. High dimensional expanders

In Definition 1.1.6 we presented the definition of expanding graphs. In recent
years several suggestions have been proposed as to what should be the “right”
definition of “expander” for higher dimensional simplicial complexes. In this
chapter we will bring some of these as well as few results about the relations
between them. This area is still in its primal state, and we can expect more
developments. The importance of expanding graphs suggests that studying ex-
panding simplicial complexes will also turn out to be very fruitful.

3.1. Simplicial complexes and cohomology

A finite simplicial complex X is a finite collection of subsets of a set X .0/,
called the set of vertices of X , which is closed under taking subsets. The sets in
X are called simplices or faces and we denote by X .i/ the set of simplices of X
of dimension i , which are the sets of X of size i C 1. So X .�1/ is comprised
of the empty set, X .0/—of the vertices, X .1/—the edges, X .2/—the triangles,



Ramanujan complexes and high dimensional expanders 157

etc. Throughout this discussion we will assume that X .0/ D fv1; : : : ; vng is the
set of vertices and we fix an order v1 < v2 < � � � < vn among the vertices.
Now, if F 2 X .i/ we write F D fvj0

; : : : ; vji
g with vj0

< vj1
< � � � < vji

.
If G 2 X .i�1/, we denote the oriented incidence number ŒF W G� by .�1/` if
F nG D fvj`

g and 0 if G ª F . In particular, for every vertex v 2 X .0/ and for
the unique face ¿ 2 X .�1/, Œv W ¿� D 1.

If F is a field then C i .X;F/ is the F-vector space of the functions fromX .i/

to F . This is a vectors space of dimension jX .i/j over F where the characteristic
functions feF jF 2 X .i/g serve as a basis.

The coboundary map ıi W C i .X;F/ ! C iC1.X;F/ is given by:

.ıif /.F / D
X

G2X.i/

ŒF W G�f .G/:

So, if f D eG for some G 2 X .i/, ıieG is a sum of all the simplices of dimen-
sion i C 1 containing G with signs ˙1 according to the relative orientations.

It is well known and easy to prove that ıi ı ıi�1 D 0. Thus B i .X;F/ D
im ıi�1—“the space of i-coboundaries” is contained in Zi .X;F/ D ker ıi —
the i-cocycles and the quotient H i .X;F/ D Zi .X;F/=B i .X;F/ is the i-th
cohomology group of X over F .

In a dual way one can look at Ci .X;F/—the F-vector space spanned by the
simplices of dimension i . Let @i W Ci .X;F/ ! Ci�1.X;F/ be the boundary
map defined on the basis element F by: @F D P

G2X.i�1/ ŒF W G� � G, i.e.,
if F D fvj0

; : : : ; vji
g then @iF D Pi

tD0.�1/tfvj0
; : : : ;cvjt

; : : : ; vji
g. Again

@i ı @iC1 D 0 and so the boundaries Bi .X;F/ D im @iC1 are inside the cycles
Zi .X;F/ D ker @i and Hi .X;F/ D Zi .X;F/=Bi .X;F/ gives the i-th homol-
ogy group of X over F . As F is a field, it is not difficult in this case to show that
Hi .X;F/ ' H i .X;F/. Sometimes, it is convenient to identify Ci .X;F/ and
C i .X;F/ by assigning F to eF .

The i-th Laplacian of X over F is defined as the linear operator �i W
C i .X;F/ ! C i .X;F/ given by �i D @iC1ıi C ıi�1@i . The operator @iC1ıi
is sometimes denoted (for clear reasons!) �up

i , while �down
i D ıi�1@i . In fact,

@iC1 is the dual of ıi and so the eigenvalues of �up
i and �down

iC1 differ only by
the multiplicity of zero. Note that what is customarily called the Laplacian of a
graph is actually the upper 0-Laplacian:

�
up
0 f .x/ D deg.x/f .x/ �

X
y�x

f .y/:
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3.2. F2-coboundary expansion

It seems that the first definition of higher dimensional expansion was given by
Linial–Meshulam [LM06], Meshulam–Wallach [MW09] and Gromov [Gro10]
(see also [DK12,GW12,SKM14,NR13]) as follows:

Definition 3.2.1. For a simplicial complex X , the F2-coboundary expansion of
X in dimension i , 0 � i < dimX , is

Ei .X/ D min
nkıif k

kŒf �k
ˇ̌̌
f 2 C i .X;F2/nB i .X;F2/

o
:

In other papers this notion is referred to as “cohomological expansion”,
“coboundary expansion”, or “combinatorial expansion”. Let us explain the nota-
tion here: F2 is the field of order two, for f 2 C i (and similarly for ıf 2 C iC1),
kf k is simply the number of i-simplices F for which f .F / ¤ 0. Finally, Œf �
is the coset f C B i .X;F2/ and

kŒf �k D minfkgk jg 2 Œf �g D minfkf C ıi�1hk jh 2 C i�1.X;F2/g:
One can see that kŒf �k is the minimal distance of f from B i .X;F2/ in the
Hamming metric, and in particular that kŒf �k D 0 if and only if f 2 B i .X;F2/.

Let us explain why this artificially looking definition gives exactly expander
graphs in the one dimensional case: If X is a graph, then B0 D im ı�1 is the
one dimensional space containing two functions, the zero function 0 and the
constant function 1 on all the vertices of X . Now, if f 2 C 0.X;F2/ then f is
nothing more than the characteristic function �A of some subset A � X .0/, in
which case Œf � D f C B0.X;F2/ D f�A; �Ag where A is the complement of
A in X .0/. Thus kŒf �k D min.jAj; jAj/. Finally kıf k is nothing more than the
size of E.A;A/, i.e., the set of edges between A and A. We can now see that
the F2-coboundary expansion of X in dimension 0 (which is the only relevant
dimension in this case) is exactly h.X/ as in Remark 1.1.5.

Very few results have been proven so far about this concept. Here is one of
them (see [MW09,Gro10]):

Proposition 3.2.2. The complete complex �Œn�1�, the simplicial complex on n
vertices where every subset is a face, has F2-coboundary expansion n

iC1
at di-

mension i , 1 � i � n � 1.

Remark 3.2.3. One should note that X has positive F2-coboundary expansion
in dimension i if and only if H i .X;F2/ D 0: If Zi .X;F2/ D B i .X;F2/ then
ıf ¤ 0 for every f 2 C inB i , while if f 2 Zi .X;F2/nB i .X;F2/ then ıf D 0

and kŒf �k ¤ 0. This vanishing ofHd�1.X;F2/ in the graph case, d D 1, is the
vanishing of H 0.X;F2/ which means that the graph X is connected. Indeed, it
is clear that an "-expander graph is connected.
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Most of the known results on coboundary expansion refer to complexes
X of dimension d whose .d � 1/-skeleton is complete (i.e., every subset of
X .0/ of size d is a face in the complex). See [LM06,MW09,Gro10,DK12,
Wag11,GW12,LM13] for various results, mainly on random complexes. There
are also some other complexes, e.g. finite spherical buildings ([Gro10,LMM14])
and base-transitive matroidal complexes ([LMM14]) which were proved to be
coboundary expanders, but all of them are of unbounded degree (see [LM13]
for bounded edge degree). Note that sometimes (especially in the unbounded
case) one prefers to use a variant of the above definition and to give weights to
the cells according to the number of faces containing them—see [LMM14] for
example.

As far as we know there is no known family of higher dimensional Z2-
coboundary expanders of bounded degree (i.e., the number of faces containing
a vertex is bounded). It is natural to suggest that the Ramanujan complexes of
Chap. 2 (and even more generally, all finite quotients of higher dimensional
Bruhat–Tits buildings of simple groups of rank � 2 over local fields) are such.
But this is not the case in general. For example, let � be any cocompact lattice
in PGL3.F / where F is a local field and assume �=Œ�; ���2 is non-trivial (i.e.,
� has a non-trivial abelian quotient of 2-power order—by [Lub87] every lattice
has such a sublattice of finite index) then H 1.�nB;F2/ ¤ 0 (since B—the
Bruhat–Tits building of PGL3.F / is contractible) and so by Remark 3.2.3, the
F2-coboundary expansion of X D �nB in dimension 1 is 0. It might be that
the vanishing of the cohomology is the only obstruction.

Another possible way to circumvent this is to use instead the notion of Gro-
mov of “cofilling”: The cofilling of X (in dimension i) is

�i .X/ D max
nkf CZik

kıif k
ˇ̌̌
f 2 C i .X;F2/nZi .X;F2/

o
:

When H i .X;F2/ vanishes, the cofilling and the F2-coboundary expansion are
related by �i .X/ D 1

Ei .X/
D Œminf 2C i nBi

kıi f k
kf CBi k �

�1. When H i .X;F2/ does
not vanish, Ei .X/ is zero (see Remark 3.2.3), but �i .x/ is always finite since
kıif k ¤ 0 for f … Zi . For example, the Cheeger constant h vanishes for
a disconnected graph, while 1

�0.x/
is the mediant (or “freshman sum”) of the

Cheeger constants of the connected components of the graph, and it is always
positive. We present the following conjecture:

Conjecture 3.2.4. Let B be the Bruhat–Tits building associated with PGLd .F /,
F a local field and d � 3. There exists a constant � D �.d; F / such that
�i .X/ � � for every finite quotient X of B and i < d .

For some very special cases of this conjecture see [KKL14]. For some appli-
cations of coboundary expansions to computer science—see [NR13] (computa-
tional geometry) and [KL14] (property testing).
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3.3. The Cheeger constant

The Cheeger constant h.X/ for a graph X is defined in Definition 1.1.4 above
(see also Remark 1.1.5 there). One may argue what should be the right definition
of h.X/ when X is a higher dimensional simplicial complex. The following
definition is given in [PRT12]:

Definition 3.3.1. For a d -dimensional simplicial complex X , denote

h.X/ D min
X.0/D`d

iD0 Ai

jX .0/jjF.A0; : : : ; Ad /j
jA0j � � � � � jAd j ;

where the minimum is over all the partitions ofX .0/ into non-empty setsA0; : : : ;

Ad and F.A0; : : : ; Ad / denotes the set of d -dimensional simplices with exactly
one vertex in each Ai .

For d D 1, it coincides with Definition 1.1.4. But, in a way, this definition
keeps the spirit of the mixing lemma (Proposition 1.1.8): h.X/ measures the
number of “edges” (i.e., d -faces) “between” (i.e., with single representatives in
each of the) Ai . The quantity jF.A0; : : : ; Ad /j is “normalized” by multiplying
it by jX.0/jQd

iD0 jAi j .
This definition works well when X has a complete .d � 1/-skeleton (see

more in §3.5), but it gives zero whenever X .d�1/ is not complete (If G D
fv0; : : : ; vd�1g … X .d�1/ take Ai D fvig for i D 0; : : : ; d � 1 and Ad D
X .0/nG. Then F.A0; : : : ; Ad / D ¿). This calls for a modified definition which
will be interesting for complexes with non-complete skeleton. One such modi-
fication is suggested in [PRT12]:

eh.X/ D min
X.0/D`d

iD0 Ai

jX .0/jjF.A0; : : : ; Ad /j
jF @.A0; : : : ; Ad /j

where F @.A0; : : : ; Ad / is the set of “.d � 1/-spheres” (namely, copies of the
.d � 1/-skeleton of the d -simplex) which have one vertex in each Ai . For a
complex with a complete skeleton, h.X/ and eh.X/ coincide.

While eh.X/ is of interest for some complexes with incomplete skeleton, for
clique complexes (such as the Ramanujan complexes constructed in Chap. 2) it
is trivial, since every “sphere” in F @.A0; : : : ; Ad / bounds a d -simplex, giv-
ing immediately eh.X/ D jX .0/j. In [GP14] another Cheeger-type constant
is suggested, which is interesting for clique complexes as well: fixing some
0 � ˛ < 1, we define

h˛.X/ D min
n jX .0/jjF.A0; : : : ; Ad /j

jA0j � � � � � jAd j
ˇ̌̌ X .0/ D `d

iD0Ai ;

8i jAi j > ˛jX .0/j
o
:
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This constant coincides with h.X/ for ˛ D 0, but for positive ˛ it avoids unbal-
anced partitions, which have F.A0; : : : ; Ad / D ¿ trivially for complexes with
bounded degrees and jX .0/j large enough.

Another natural challenge, in the spirit of the Cheeger constant, is to bound
jF.A0; : : : ; Ad /j for sets Ai which do not form a partition. In [PRT12], the
authors call the differenceˇ̌̌

jF.A0; : : : ; Ad /j � jX .d/jjA0j � � � � � jAd j�
n

dC1

	 ˇ̌̌
(3.1)

the discrepancy of A0; : : : ; Ad . It turns out that the discrepancy, as well as the
various generalizations of the Cheeger constant can be bounded in terms of the
spectrum of the Laplacian. This brings us to our next subject.

3.4. Spectral gap

In Chap. 1 we saw that the notion of expander can be described by means of
the eigenvalues of the adjacency matrix A of the graph. For a k-regular graph
X , the matrix A is nothing more than A D kI � �

up
0 where �up

0 is the 0-
dimensional upper Laplacian of X over F D R as defined in §3.1. We can
translate Theorem 1.1.7 to deduce that a family of k-regular graphs fXtgt2I is a
family of expanders if and only if there exists " > 0 such that every eigenvalue
� of �up

0 jZ0.X;R/ D �0jZ0.X;R/ satisfies � � " (the last is equality is since
�down

i .Zi .X;R// D ıi�1@i .ker @i / D 0). Note that Z0.X;R/ D ff W X .0/ !
R j P

x2X.0/ f .x/ D 0g. It is therefore natural to generalize and to define:

Definition 3.4.1. Let X be a simplicial complex of dimension d and 0 � i �
d � 1. We denote �i .X/ D min Spec.�i jZi .X;R// and we say that X has spec-
tral gap �i .X/ in dimension i . We write �.X/ for �d�1.X/.

It is natural to expect that just like in graphs where there is a direct con-
nection between the Cheeger constant and the spectral gap, something like that
should happen in the higher dimensional case, but examples presented in
[PRT12] show that there exist simplicial complexes with �.X/ D 0 while
h.X/ > 0. Nevertheless, spectral expansion does imply a Cheeger bound:

Theorem 3.4.2 ([PRT12]). For a finite complex with a complete skeleton, �.X/
� h.X/.

A similar generalization is obtained in [PRT12] for the expander mixing
lemma (Proposition 1.1.8 above). Given any two sets of vertices A;B � V , the
mixing lemma for graphs bounds the deviation of jE.A;B/j from its expected
value in a random k-regular graph, in terms of the spectral invariant �0. From
the perspective of the simplicial Laplacian, �0 is the spectral radius of kI �
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�0jZ0.X;R/, i.e., the maximal absolute value of its eigenvalues. The following
generalization then holds for higher dimensional complexes:

Theorem 3.4.3 ([PRT12]). Let X be a finite d -dimensional complex with a
complete .d � 1/-skeleton. Let k be the average degree of a .d � 1/-cell, and
define

�0.X/ D maxfj� j j � 2 Spec.kI ��d�1jZd�1.X;R//g:
Then for every disjoint sets of vertices A0; : : : ; Ad ,ˇ̌̌

jF.A0; : : : ; Ad /j � kjA0j � � � � � jAd j
jX .0/j

ˇ̌̌
� �0.X/.jA0j � � � � � jAd j/ d

dC1 :

When specializing to d D 1 this gives the original expander mixing lemma
for graphs, except for the additional assumption that the sets of vertices are
disjoint. The reader is referred to [PRT12] for the proofs of Theorems 3.4.2 and
3.4.3.

For complexes with non-complete skeleton, it was conjectured in [PRT12]
that Theorem 3.4.2 should hold for the constant eh.X/. This was recently shown
to be true:

Theorem 3.4.4 ([GS14]). For any finite complex, �.X/ � eh.X/.
The second variant of the Cheeger constant, h˛.X/, is bounded in [GP14]

for triangle complexes. The bound involves not only �.X/ D �1.X/, but also
the spectrum of the vertex Laplacian:

Theorem 3.4.5 ([GP14]). If X is a triangle complex, and for some k the spec-
tral radius of kI ��0jZ0.X;R/ is �0, then

h˛.X/ � �1

jX .0/j
�
k � �0

�
1C 10

9˛3

��
:

Note that this implies Theorem 3.4.2 (for triangle complexes), as the com-
plete graph has �0 D 0 for k D jX .0/j.

In the same spirit, an expander mixing lemma for arbitrary complexes is
proved in [Par13], using the spectra of all Laplacians together:

Theorem 3.4.6 ([Par13]). Let X be a complex of dimension d , such that

Spec.�i jZi .X;R// � Œki � �i ; ki C �i �

for 0 � i � d � 1. Then for any disjoint sets of vertices A0; : : : ; Ad ,ˇ̌̌
jF.A0; : : : ; Ad /j � k0 � � � kd�1

nd
jA0j � � � � � jAd j

ˇ̌̌
�cdk0 � � � kd�1

��0

k0
C � � � C �d�1

kd�1

�
max jAi j

where cd depends only on d .
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For an “expander mixing lemma” for Ramanujan complexes—see [EGL14]
—where it is applied to give a lower bound on their chromatic number.

It is natural to suggest some extension of Alon–Boppana theorem (Theo-
rem 1.1.2) to this high dimensional case (see also Theorem 2.1.4). In [PR12] it
is shown that the high dimensional analogue of Alon–Boppana indeed holds in
several interesting cases (for example, for quotients of an infinite complex with
non-zero spectral gap), but that it can also fail. For a “general” Alon–Boppana
type theorem—see [Fi14].

The most important work so far on the spectral gap of complexes is the
seminal work of Garland [Gar73]. As this work has been described in many
placed (e.g. [Bor73,Zuk96,GW12]) we will not elaborate on it here. We just
mention that Garland proved Serre’s conjecture that H i .X;R/ D 0 for every
1 � i � d � 1 where X is a finite quotient of the Bruhat–Tits building of a
simple group of rank d � 2 over a local field F . He did this by proving a bound
on the spectral gaps which depends only d and F (the i-th cohomology group
over R vanishes if and only if the corresponding spectral gap �i is non-zero).

It is still not clear what is the relation between the coboundary expansion
and the spectral gap. See [GW12,SKM14] where some complexes are presented
with �i .X/ arbitrarily small while Ei .X/ is bounded away from zero, and the
other way around.

3.5. The overlap property

An interesting “overlap” property for complexes, which is closely related to ex-
panders, was defined by Gromov [Gro10], and was further studied in [FGLC12,
MW14,Kar12,KKL14,KW]. We need first some notation: LetX be a d -dimen-
sional simplicial complex and ' W X .0/ ! Rd an injective map. The map ' can
be extended uniquely to a simplicial mapping e' from X (considered now as a
topological space in the obvious way) to Rd (i.e., by extending ' affinely to the
edges, triangles, etc.) This will be called a geometric extension. The map ' can
be extended in many different ways to a continuous map e' from the topological
simplicial complex X to Rd , such e' will be called topological extensions.

Definition 3.5.1. Let X be a d -dimensional simplicial complex and 0 < " 2 R.
We say that X has "-geometric overlap (resp. "-topological overlap) if for every
injective map ' W X .0/ ! Rd and a geometric (resp. topological) extensione' W X ! Rd , there exists a point z 2 Rd such that e'�1.z/ intersects at least
" � jX .d/j of the d -dimensional simplices of X .

To digest this definition, let us spell out what does it mean for expander
graphs: Let ' W X .0/ ! R be an injective map and e' any continuous extension
of it to the graph. Let z 2 R be a point such that b1

2
jX .0/jc of the images of
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the vertices are above it (and call L � X .0/ this set of vertices) and the rest are
below it. Then e'�1.z/ intersects all the edges of E.L;L/ (D the set of edges
going from L to its complement). If X is an "-expander k-regular graph, then
X .1/ D jX.0/jk

2
while jE.L;L/j � "

2
jLj � "

2
jX.0/j

2
D "

2k
jX .1/j. Thus X has

the "
2k

-topological overlapping property.
The reader should notice however that this property is not equivalent to ex-

pander. In fact, it does not even imply that the graph X is connected. It can be
a union of a large expanding graph and a small connected component. Still, this
property captures the nature of expansion especially in the higher dimensional
case.

It is interesting to mention that while it is trivial to prove that the complete
graph is an expander, it is a non-trivial result that the higher dimensional com-
plete complexes have the overlap property. This was proved for the geometric
overlap in [BF84] for dim 2 and in [Bár82] for all dimensions. For the topolog-
ical overlap, this was proved in [Gro10] (see also [MW14,Kar12,KW]).

The main result of [FGLC12] asserts that there even exist simplicial com-
plexes with the geometric overlapping property of bounded degree. They prove
it by several methods: probabilistic and constructive. The constructive examples
are the Ramanujan complexes which were discussed in length in Chap. 2 (but
under the assumption that q is large enough with respect to d ). In fact, the proof
there is valid for all the finite quotients of B D B.PGLd .F// and not only to
the Ramanujan ones (again assuming q � d ). It is quite likely that the same
result holds also for the other Bruhat–Tits buildings of simple groups of rank
� 2 [Ev14]*. In all these results the following theorem of Pach plays a crucial
role:

Theorem 3.5.2 ([Pac98]). For every d � 1, there exists cd > 0 such that for
every dC1 disjoint subsets P1; : : : ; PdC1 of n points in general position in Rd ,
there exists z 2 Rd and subsets Qi � Pi with jQi j � cd jPi j such that every
d -dimensional simplex with exactly one vertex in each Qi , contains z.

Let us show now, following [PRT12] how to deduce the geometric overlap
property from Pach’s theorem and the mixing lemma, when we have a “concen-
tration of the spectrum”. Let X be a d -dimensional complex on n vertices, with
a complete .d � 1/-skeleton. For an arbitrary injective map ' W X .0/ ! Rd we
can divide '.X .0// to .d C 1/-disjoint sets P0; : : : ; Pd , each of order (approxi-
mately) n

dC1
. By Pach’s theorem there is a point z 2 Rd and subsets Qi � Pi

of sizes jQi j D cd n
dC1

, such that z belongs to every d -simplex formed by rep-
resentatives from Q0; : : : ;Qd . This means that for the geometric extensione' W X ! Rd , e'�1.z/ intersects every simplex in F.'�1.Q0/; : : : ; '

�1.Qd //.

* See [FGLC12] for another constructive method based on Ramanujan graphs and for a random
construction.
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Turning to the mixing lemma (Theorem 3.4.3 above), if the average degree of a
.d � 1/-cell in X is k, and Spec�d�1jZd�1.X;R/ � Œk � "; k C "�, then

jF.'�1.Q0/; : : : ; '
�1.Qd //j � kjQ0j � � � jQd j

n
� ".jQ0j � � � jQd j/ d

dC1

D
� cdn

d C 1

�d � kcd

d C 1
� "

�
:

Since this applies to every ' W X .0/ ! Rd , the quotient by jXd j D k
dC1

�
n
d

	
gives a lower bound for the geometric expansion of X :

overlap.X/ � . cd n
dC1

/d . kcd

dC1
� "/

jXd j � cd
d

edC1

�
cd � ".d C 1/

k

�
:

While bounds on the spectrum give some geometric overlap properties, it is
much more difficult to get the topological overlap property. The only method
known to us is via the following Theorem of Gromov (see [KW] for a simplified
proof; though still highly non-trivial):

Theorem 3.5.3. If X has F2-coboundary expansion "i .X/ � � jX.iC1/j
jX.i/j for all

0 � i � d � 1, then X has the "-topological overlap property for some " D
".�; d/ > 0.

Still, we do not know any example of higher dimensional complexes of
bounded degree with the F2-coboundary expansion property. It is tempting to
conjecture that the finite quotients X of a fixed high-rank Bruhat–Tits build-
ing of dimension d , with trivial cohomology over F2, form such a family. As
mentioned above they were proved in [FGLC12] to have the geometric over-
lapping property. But as observed in §3.2, they are not coboundary expanders
as the F2-cohomology does not necessarily vanish. Kaufman noticed that Theo-
rem 3.5.3 can be strengthened to include cases with non-trivial cohomology pro-
vided any non-trivial cocycle satisfies a linear systolic lower bound (for a com-
plete and simplified proof of Theorem 3.5.3 and its stronger form, see [KW]).
This extension enabled Kazhdan, Kaufman and Lubotzky [KKL14] to prove
the existence of 2-dimensional simplicial complexes with bounded (vertex) de-
gree and with the topological overlapping property. These are the 2-skeletons of
Ramanujan complexes of dimension 3 covered by the Bruhat–Tits building of
PGL4.Fq..t///, when q is sufficiently large (and fixed). The problem for higher
d and for the Ramanujan complexes themselves (even for dimension 2) is still
open.
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